4 resultados para Endospore-formers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endospore-forming bacteria are often isolated from different marine sponges, but their abundance varies, and they are frequently missed by culture-independent studies. Within endospore-formers, Bacillus are renowned for the production of antimicrobials and other compounds of medical and industrial importance. Although this group has been well studied in many different environments, very little is known about the actual diversity and properties of sporeformers associated with marine sponges. Identification of the endospore-forming bacteria associated with the marine sponges; Haliclona simulans, Amphilectus fucorum and Cliona celata, has uncovered an abundant and diverse microbial population composed of Bacillus, Paenibacillus, Solibacillus, Halobacillus and Viridibacillus species. This diversity appears to be overlooked by other non-targeted approaches where spore-formers are masked by more dominant species within the ecosystem. In addition to the identification of two antibiotic resistant plasmids, this bank of sporeformers produce a range of bioactive compounds. New antimicrobial compounds are urgently needed to combat the spread of multidrug resistant pathogens, as few new options are entering the drug discovery pipelines for clinical trials. Based on the results of this project, endospore-formers associated with marine sponges may hold the answer. The power of coupling functional based assays with genomic approaches has enabled us to identify a novel class 1 lantibiotic, subtilomycin, which is active against several clinically relevant pathogens. Subtilomycin is encoded in the genomes of all the marine sponge B. subtilis isolates analysed. They cluster together phylogenetically and form a distinct group from other sequenced B. subtilis strains. Regardless of its potential clinical relevance, subtilomycin may be providing these strains with a specific competitive advantage(s) within the stringent confines of the marine sponge environment. This work has outlined the industrial and biotechnological potential of marine sponge endospore-formers which appear to produce a cocktail of bioactive compounds. Genome sequencing of specific marine sponge isolates highlighted the importance of mining extreme environments and habitats for new lead compounds with potential therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I examine the relationship between the Kyoto School philosopher, Nishitani Keiji, and the work of Friedrich Nietzsche, focusing on the two thinkers’ respective approaches to the problem of nihilism. The work begins by positioning Nishitani’s interpretation of Nietzsche’s account of nihilism with reference to diverse readings of Nietzsche in Western scholarship. I then consider the development of Nishitani’s reading of Nietzsche from his lecture series on nihilism, The Self- Overcoming of Nihilism, through to his magnum opus, Religion and Nothingness. I make two key contributions to recent scholarly debate on Nishitani’s relationship to Nietzsche. The first is to emphasise the importance of Nishitani’s response to the idea of eternal recurrence for understanding his critical approach to Nietzsche’s thinking. I argue against the view, offered by Bret Davis, that Nishitani’s criticisms of Nietzsche are primarily based on the former’s negative assessment of the idea of will to power. The second contribution is to situate Nishitani’s critical approach to eternal recurrence within his broader attempt to formulate a Zen-influenced conception of temporality and historicity. I then argue for the necessity of this conceptual background for coming to grips with his conception of the ‘transhistorical’ grounds of historicity in emptiness (śūnyatā), as outlined in the later chapters of Religion and Nothingness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sinapic acid (SA) is a nutraceutical with known anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, and anti-anxiety properties. Novel co-crystals of SA were prepared with co-formers belonging to the category of GRAS [isonicotinic acid (INC), nicotinamide (NIA)], non-GRAS [4-pyridinecarbonitrile (PYC)], and active pharmaceutical ingredients (APIs) [6-propyl-2-thiouracil (PTU)] list of compounds. Structural study based on the X-ray crystal structures revealed the intermolecular hydrogen-bonded interactions and molecular packing. The crystal structure of sinapic acid shows the anticipated acid-acid homodimer along with discrete hydrogen bonds between the acid carbonyl and the phenolic moiety. The robust acid-acid homodimer appears to be very stable and is retained in the structures of two co-crystals (SA[middle dot]NIA and SA[middle dot]PYC). In these cases, co-crystallization occurs via intermolecular phenol O-H[three dots, centered]Naromatic hydrogen bonds between the co-formers. In the SA[middle dot]PTU[middle dot]2MeCN co-crystal the acid-acid homodimer gives way to the anticipated acid-amide heterodimer, with the phenolic moiety of SA hydrogen-bonded to acetonitrile. Attempts at obtaining the desolvated co-crystal led to lattice breakdown, thus highlighting the importance of acetonitrile in the formation of the co-crystal. Among the co-crystals examined, SA[middle dot]INC (5 weeks), SA[middle dot]NIA (8 weeks) and SA[middle dot]PYC (5 weeks) were found to be stable under accelerated humidity conditions (40 [degree]C, 75% RH), whereas SA[middle dot]PTU[middle dot]2MeCN decomposed after one week into individual components due to solvent loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal pathogen Candida albicans causes serious nosocomial infections in patients, in part, due to formation of drug-resistant biofilms. Protein kinases (PK) and transcription factors (TF) mediate signal transduction and transcription of proteins involved in biofilm development. To discover biofilm-related PKs, a collection of 63 C. albicans PK mutants was screened twice independently with microtiter plate-based biofilm assay (XTT). Thirty-eight (60%) mutants showed different degrees of biofilm impairment with the poor biofilm formers additionally possessing filamentation defects. Most of these genes were already known to encode proteins associated with Candida morphology and biofilms but VPS15, PKH3, PGA43, IME2 and CEX1, were firstly associated with both processes in this study. Previous studies of Holcombe et al. (2010) had shown that bacterial pathogen, Pseudomonas aeruginosa can impair C. albicans filamentation and biofilm development. To investigate their interaction, the good biofilm former PK mutants of C. albicans were assessed for their response to P. aeruginosa supernatants derived from two strains, wildtype PAO1 and homoserine lactone (HSL)-free mutant ΔQS, without finding any nonresponsive mutants. This suggested that none of the PKs in this study was implicated in Candida-Pseudomonas signaling. To screen promoter sequences for overrepresented TFs across C. albicans gene sets significantly up/downregulated in presence of bacterial supernatants from Holcombe et al. (2010) study, TFbsST database was created online. The TFbsST database integrates experimentally verified TFs of Candida to analyse promoter sequences for TF binding sites. In silico studies predicted that Efg1p was overrepresented in C. albicans and C. parapsilosis RBT family genes.